A Non-homogeneous P-laplace Equation in Border Case
نویسنده
چکیده
Searching minimizers of functions on the convenient level set of the constrain function we obtain weak solutions of a non-homogenuous p-Laplace equation in border case without using the regularity results of linear elliptic equations .
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملOn the non-vanishing property for real analytic solutions of the p-Laplace equation
By using a nonassociative algebra argument, we prove that u ≡ 0 is the only cubic homogeneous polynomial solution to the p-Laplace equation div|Du|p−2Du(x) = 0 in Rn for any n ≥ 2 and p 6∈ {1, 2}.
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملNonlinear Picone identities to Pseudo $p$-Laplace operator and applications
In this paper, we derive a nonlinear Picone identity to the pseudo p-Laplace operator, which contains some known Picone identities and removes a condition used in many previous papers. Some applications are given including a Liouville type theorem to the singular pseudo p-Laplace system, a Sturmian comparison principle to the pseudo p-Laplace equation, a new Hardy type inequality with weight an...
متن کامل